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Abstract 

A novel method, based on the topology of the cardinal vertex, is described to find 
an upper bound for the largest eigenvalue of a graph. 

1. Introduction 

Graph theory has been shown to be an appropriate tool for the analysis of 
topologically related molecular properties [1]. In the study of conjugated molecules, 
a simple Htickel molecular orbital (HMO) treatment [2-4] is entirely equivalent to 
a graph-theoretical treatment mainly because of the close relation between the HMO 
Hamiltonian and molecular topology [5]. In particular, the eigenvalues of the adjacency 
matrix (A) of the graph which possesses the same pattern of connectedness as the 
molecule under consideration are identical to the HMO energies of the molecule. The 
totality of eigenvalues of the matrix A is called a spectrum of the graph corresponding 
to this matrix [6]. Within the framework of HMO theory, graph spectral analysis was 
carried out analytically for certain classes of conjugated systems such as rings and 
chains [7], stars and other trees [8-10]. 

The spectrum of a graph possesses the property that if D m is the maximal 
vertex degree of a graph, then the interval in which the eigenvalues &i of the graph 
lie is limited and expressed by the Frobenius theorem [6, 11]: 

-Om<-~i<-D m i = 1 , 2  . . . . .  N. 

Therefore, for the Htickel graphs [5, 11], the whole spectrum lies in the interval 
from - 3  to + 3. However, in the linear polyenes and annulenes the eigenvalues lie 
in the interval from - 2  to +2. The largest and the smallest eigenvalues of a molecular 
graph have already attracted much attention and have been investigated in some 
detail [12, 13]. Quite recently, topologically-dependent alternatives of the above- 
mentioned bounds for alternant hydrocarbons were reported [14]: 
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~t I < ~e 2 - 2a 4, (1) 

~1 <- ~] e4 + 4ea6 + 2a2 - 4e2a4 - 4a8, (2) 

where ~1 is the largest eigenvalue, whereas e and a~ (k = 4, 6, 8) stand for the 
number of edges and the coefficients in the corresponding characteristic polynomial 
p(fl.) of the graph, respectively [15, 16]. 

In the present study, a novel upper bound (based on nodal properties of a 
graph) for the largest eigenvalue is developed. 

2. Theory 

Formulas (1) and (2) have certain drawbacks. For instance, although the latter 
is a very realistic bound for ~ ,  the calculation of a k values might be a tedious task 
to do. On the other hand, eq. (1) becomes inferior to the bounds given by the 
Frobenius theorem if the number of edges (e) and vertices (N) of a graph are quite 
large. For instance, in the case of terrylene (e = 37, N = 30), the bound for ~l 
becomes 3.51, whereas D m is just 3. Actually, eq. (1) gives better results as long 
as e 2 - 2a 4 < 81 or, for benzenoid graphs, e + V 3 < 27 (see the appendix), where V 3 
is the number of vertices having degree three. 

To compute the upper bounds of eigenvalues of a given N-row square matrix, 
there exist many methods and theorems [17]. Of these, Gershgorin's theorem [18] 
states that all the eigenvalues of an N x N matrix A lie in the region of the complex 
plane given by the union of N disks: 

N 

I b i i - ~ . l < Z b i j ,  i = 1  . . . . . .  N. (3) 
J=l  
J v~i 

Applied to the adjacency matrix of a given chemical graph where the matrix 
elements (b0) are either zero or one, Gershgorin's theorem proves the Frobenius 
theorem because all the diagonal elements bii  a r e  zero for nonheteroconjugated 
molecules and the sum of off-diagonal matrix elements row-wise is simply equal 
to the degree of the vertex associated with a specific bii element. In that respect, 
the application of Gershgorin's theorem to the adjacency matrix A has no merit. 
However, the concept of T(A) graphs (fig. 1) [19] (which are the topological 
representation of already known T(A)-type square matrices [6,20]), together with 
the above-mentioned theorem gives an upper bound for the largest eigenvalue dictated 
mainly by the degrees of a given graph. 

In graph theor3~, the matrix elements bij can be interpreted as the number of 
unitary walks between the vertices i and j. Then, the product of two elements of 
matrix A, brj bjs, is equal to 1 if vertex r is connected to vertex j, and the latter in 
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its turn is connected to vertex s, i.e. between r and s there is a walk of length 2 
passing through j. If there is no such walk, the product b d bj, is zero [6]. 

The square of the matrix A has the element Gs, which is equal to 

N 
c .  = £ b ibj,. 

j= l  

(4) 

The right-hand side of eq. (4) represents the number of all walks of length 
2 connecting vertex r with vertex s. A graph T(A) is the graphical representation 
of all the off-diagonal as well as diagonal relations of the A 2 matrix [19,20] and 
it is proved that T(A) graphs of alternant hydrocarbons are decomposable [19] into 
T(A*) and T(A °) mates. Some examples are presented in fig. 1. Note that the number 

Z > 

G ( ~ )  T(A °) T(P,  ¢ ) 

5 6 4~74, 
1 

Z,~" F .......... "2 
5 

7 

6 

Fig. 1. T(A) graphs of certain systems. 

of self-loops on the vertices of a T(A) graph is equal to the degrees of the corresponding 
vertices of the original graph G(A). 

On the other hand, the following equations hold in linear algebra [21] for the 
adjacency matrix A of a graph: 

AX = ~.X, (5) 

A2X= ~2X, (6) 
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where X is the invariant vector or, more commonly, eigenvector and A. is an eigen- 
value of the graph. Hence, Gershgorin's theorem can be used to obtain the bounds 
for eigenvalues of the A 2 matrix via T(A) graphs, thus enabling one to evaluate the 
bounds for the spectrum of the adjacency matrix A. 

DEFINITION 1 

The cardinal vertex Vc is a vertex having the greatest number of self-loops 
and, in addition, the greatest number of connections in a T(A) graph. Note that Vc 
in a T(A) graph is associated with one of the vertices having the greatest degree 
in the corresponding G(A) graph. 

THEOREM 1 

In a H~ickel graph, the largest eigenvalue cannot be greater than 

l K 11/2 ' 
Dm + Z Cm i 

i=1 
iCm 

which is dictated by the topology of the cardinal vertex. 

Proof 
Let ~ be the greatest eigenvalue of a graph G(A) and A m = ~t, 2. Thus, A m 

is the greatest eigenvalue of the corresponding T(A) graph (or T(A) mates, T(A*) 
and T(A°), in the case of even alternant hydrocarbons). Since bii = 0 in the adjacency 
matrix A, ineq. (3) becomes 

N 
[~m[_< Zbmi ,  (7) 

i=1 

where the right-hand side of ineq. (7) is equal to the degree D m of the cardinal 
vertex which leads to 2m < Din. On the other hand, ineq. (3) applied to the corresponding 
T(A) graph becomes 

K 
[O m - A m [ <  ZCmi,  (8) 

i=1 
i~:m 

w h e r e  Y.iKl,i~mCmi represents the total number of connections of Vc in the 
corresponding T(A) graph. The upper index K is equal to N and N/2 for nonalternant 
and even alternant systems, respectively, whereas it is equal to (N+ 1)/2 or 
( N -  1)/2 for odd alternant systems, depending on which one of the T(A) mates 
possesses the original cardinal vertex. 
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By rearranging ineq. (8) and substituting A m = ,~2, one obtains 

I K 

&rn -< Drn + E Cm i = DT- (9 )  
i=I 
i~em 

As long as DT < Din, the right-hand side of ineq. (9) is a much better bound (D T) 
than D m, which requires that 

K 
ZCmi 
i=1 
i~tm 

(10) 

Actually, for Hfickel graphs inequality (10) is fulfilled in all cases for D m > 1 
(ethylene has D m = 1). For example, the largest eigenvalue of the diphenylmethyl 
system [22] is 2.236, whereas the bounds given by DT and D m are 2.449 and 3, 
respectively. D y is obtained as shown in fig. 2. 

~1  = 3  

/ k  ,,< 2 .449 

• r (g~"l T (~q*) 

Fig. 2. T(A) graphs of the diphenylmethyl system 
leading to the upper bound of the largest eigenvalue. 

Classification of vertices of T(A ) graphs 

Vertices of a T(A) graph retain much of the information orginally possessed 
by graph G(A). The degree of any vertex in G(A) as well as the A2-relation (walks 
of length 2) are reflected in a T(A) graph. 

DEFINITION 2 

Let i and j be the number of self-loops and the number of connections of any 
vertex in a T(A) graph, respectively. Then any vertex can be described properly by 
a notation of type Vicj). 

Some examples for the classification of vertices are given in fig. 3. The 
vertex under consideration is labelled with a • sign. 
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6(A) 

V1 (0) v 

g 

V2 (4) 

h< 
Fig. 3. Some examples for the classification of vertices. 

3. Results and discussion 

Table 1 tabulates some vertex types which occur in Htickel graphs. As can 
be seen from tables 1 and 2, when the cardinal vertex is one of the types listed, the 
bound given by DT is superior to the Frobenius bound (Din) except for vertices of 
type V10), I/1(2), V2(3), and V2(4). These types of vertices are present (indicated by a 
• sign) in one of the following or similar graphs. 

V V 

• 5 
VI(1) VI(2) V2(3) V2(4) 

However, it is unlikely for these vertices to be a cardinal vertex in a Hfickel graph; 
hence in these systems the bounds are dictated by other types of vertices (cardinal 
vertex). Thus, the simple method presented here provides one with superior or 
comparable bounds (DT) tO the Frobenius approach. 

The construction of T(A) graphs especially for altemant hydrocarbons is a 
straightforward process [19] and D T depends only on the topology of  the cardinal 
vertex, which also possesses some partial information about the fine topology of  the 
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Table 1 

Some vertex types in Htlckel graphs and the corre- 
sponding possible bounds for the largest eigenvalue. 

K 
Type D m ~'i = l.i'g mCmi Dr 

V:(o ) 1 0 1.00 

VK: ) 1 1 1.41 

V~(2 ) 1 2 1.73 

V2~o) 2 0 1.41 
V2(~) 2 1 1.73 

2 2 2.0o 

V2(3 ) 2 3 2.23 

V2(4) 2 4 2.45 
I"3(0) 3 0 1.73 

V3(~) 3 1 2.00 

1/3(2) 3 2 2.23 

V3(3) 3 3 2.45 
I"3(4) 3 4 2.64 

V3(5) 3 5 2.82 

I,'3(6) 3 6 3.00 

Table 2 

The largest eigenvalue (;tl) and its upper 
bounds (D m and DT) for some molecules. 

Molecule D m D T X: [22] 

Benzene 2 2.000 2.000 

Naphthalene 3 2.645 2.303 

Diphenylene 3 2.645 2.532 

Biphenyl 3 2.645 2.278 

Styrene 3 2.449 2.136 

Para-quinodimethane 3 2.449 2.170 

Hexatriene 2 2.000 1.802 

Phen anthrene 3 2.828 2.435 

system.  Of  course ,  in some cases d i f ferent  molecu les  might  have  the same type  o f  
cardinal vertices. For  instance, a V3(6) type vertex pattern exists in 3, 4-benzphenanthrene 
(I) as wel l  as in phena leny l  (II)  kernels.  Phenanthrene ,  naphtha lene  and benzene  
kernels  possess  V3(5), V3(4), and V2(2) type cardinal  vert ices ,  respect ive ly .  Thus ,  
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(I) (II) 

whenever these systems are embedded in more complex structures, DT of the initial 
and former structures will be the same as long as the embedding process does not 
engender a new cardinal vertex. One should also consider the priority order if more 
than one type of kernels are embedded. For instance, in the structure of ovalene 
(III), both naphthelene and phenalenyl kernels (also the 3, 4-benzphenanthrene 

(IlI) 

kernel (I)) exist, which possess V3(4) and V3(6) type vertices, respectively. However, 
priority has to be given to the phenalenyl kernel (II). 

4. Conclusions 

The upper bounds for eigenvalues may be found by using various topologically 
irrelevant approaches [17]. On the other hand, the topological bounds [14], despite 
their accuracy, require the usage of certain predetermined polynomial coefficients 
(the characteristic polynomial) which most of the time are difficult to evaluate. The 
method presented above is a very straightforward one to estimate the range of 
eigenvalues of  a graph. Also, it has to be mentioned that the present method is 
superior to the Frobenius approach (table 2). 



L. Tiirker, Largest eigenvalue of  a graph 349 

Appendix 

For altemant hydrocarbons, the A4 coefficient is given in ref. [15]: 

e 2 - e 
a 4 - _ _  V 2 - 3V 3 - 2R4, 

2 

where V 2 and V3 are the numbers of vertices having degree two and three, respectively. 
The number of  four-membered rings is expressed by R4. It is known [11,15] that 
V1 + 2V2 + 3V3 = 2e. Hence, for benzenoid molecules (V1 = 0 and R4 = 0), eq. (1) 
becomes 

-<  /3e + 3 v 3 -  zo. 

The condition satisfying &u < Dmax can be obtained easily for Hfickel graphs which 
can have maximum degree of  three, that is, 

e +  V3<27.  
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